Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ASN Neuro ; 14: 17590914211062765, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35014548

RESUMO

Neuronal migration and dendritogenesis are dependent on dynamic changes to the microtubule (MT) network. Among various factors that regulate MT dynamics and stability, post-translational modifications (PTMs) of MTs play a critical role in conferring specificity of regulatory protein binding to MTs. Thus, it is important to understand the regulation of PTMs during brain development as multiple developmental processes are dependent on MTs. In this study, we identified that carboxypeptidase E (CPE) changes tubulin polyglutamylation, a major PTM in the brain, and we examine the impact of CPE-mediated changes to polyglutamylation on cortical neuron migration and dendrite morphology. We show, for the first time, that overexpression of CPE increases the level of polyglutamylated α-tubulin while knockdown decreases the level of polyglutamylation. We also demonstrate that CPE-mediated changes to polyglutamylation are dependent on the CPE zinc-binding motif and that this motif is necessary for CPE action on p150Glued localization. However, overexpression of a CPE mutant that does not increase MT glutamylation mimics the effects of overexpression of wild type CPE on dendrite branching. Furthermore, although overexpression of wild type CPE does not alter cortical neuron migration, overexpression of the mutant may act in a dominant-negative manner as it decreases the number of neurons that reach the cortical plate (CP), as we previously reported for CPE knockdown. Overall, our data suggest that CPE changes MT glutamylation and redistribution of p150Glued and that this function of CPE is independent of its role in shaping dendrite development but plays a partial role in regulating cortical neuron migration.


Assuntos
Microtúbulos , Tubulina (Proteína) , Carboxipeptidase H , Neurogênese , Neurônios
2.
Mol Brain ; 14(1): 112, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34247625

RESUMO

Memory and long term potentiation require de novo protein synthesis. A key regulator of this process is mTORC1, a complex comprising the mTOR kinase. Growth factors activate mTORC1 via a pathway involving PI3-kinase, Akt, the TSC complex and the GTPase Rheb. In non-neuronal cells, translocation of mTORC1 to late endocytic compartments (LEs), where Rheb is enriched, is triggered by amino acids. However, the regulation of mTORC1 in neurons remains unclear. In mouse hippocampal neurons, we observed that BDNF and treatments activating NMDA receptors trigger a robust increase in mTORC1 activity. NMDA receptors activation induced a significant recruitment of mTOR onto lysosomes even in the absence of external amino acids, whereas mTORC1 was evenly distributed in neurons under resting conditions. NMDA receptor-induced mTOR translocation to LEs was partly dependent on the BDNF receptor TrkB, suggesting that BDNF contributes to the effect of NMDA receptors on mTORC1 translocation. In addition, the combination of Rheb overexpression and artificial mTORC1 targeting to LEs by means of a modified component of mTORC1 fused with a LE-targeting motif strongly activated mTOR. To gain spatial and temporal control over mTOR localization, we designed an optogenetic module based on light-sensitive dimerizers able to recruit mTOR on LEs. In cells expressing this optogenetic tool, mTOR was translocated to LEs upon photoactivation. In the absence of growth factor, this was not sufficient to activate mTORC1. In contrast, mTORC1 was potently activated by a combination of BDNF and photoactivation. The data demonstrate that two important triggers of synaptic plasticity, BDNF and NMDA receptors, synergistically power the two arms of the mTORC1 activation mechanism, i.e., mTORC1 translocation to LEs and Rheb activation. Moreover, they unmask a functional link between NMDA receptors and mTORC1 that could underlie the changes in the synaptic proteome associated with long-lasting changes in synaptic strength.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Neurônios/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Dendritos/metabolismo , Endocitose , Endossomos/metabolismo , Células HeLa , Hipocampo/citologia , Humanos , Camundongos , Optogenética , Fosforilação , Multimerização Proteica , Proteína Enriquecida em Homólogo de Ras do Encéfalo/metabolismo , Receptor trkB/metabolismo , Proteína S6 Ribossômica
3.
J Med Chem ; 63(15): 8231-8249, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32608236

RESUMO

Sialin, encoded by the SLC17A5 gene, is a lysosomal sialic acid transporter defective in Salla disease, a rare inherited leukodystrophy. It also enables metabolic incorporation of exogenous sialic acids, leading to autoantibodies against N-glycolylneuraminic acid in humans. Here, we identified a novel class of human sialin ligands by virtual screening and structure-activity relationship studies. The ligand scaffold is characterized by an amino acid backbone with a free carboxylate, an N-linked aromatic or heteroaromatic substituent, and a hydrophobic side chain. The most potent compound, 45 (LSP12-3129), inhibited N-acetylneuraminic acid 1 (Neu5Ac) transport in a non-competitive manner with IC50 ≈ 2.5 µM, a value 400-fold lower than the KM for Neu5Ac. In vitro and molecular docking studies attributed the non-competitive character to selective inhibitor binding to the Neu5Ac site in a cytosol-facing conformation. Moreover, compound 45 rescued the trafficking defect of the pathogenic mutant (R39C) causing Salla disease. This new class of cell-permeant inhibitors provides tools to investigate the physiological roles of sialin and help develop pharmacological chaperones for Salla disease.


Assuntos
Aminoácidos/química , Aminoácidos/metabolismo , Lisossomos/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Simportadores/metabolismo , Animais , Relação Dose-Resposta a Droga , Células HEK293 , Células HeLa , Humanos , Ligantes , Simulação de Acoplamento Molecular/métodos , Estrutura Secundária de Proteína , Ratos
4.
Cereb Cortex ; 29(7): 2890-2903, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29982499

RESUMO

Higher brain function relies on proper development of the cerebral cortex, including correct positioning of neurons and dendrite morphology. Disruptions in these processes may result in various neurocognitive disorders. Mutations in the CPE gene, which encodes carboxypeptidase E (CPE), have been linked to depression and intellectual disability. However, it remains unclear whether CPE is involved in early brain development and in turn contributes to the pathophysiology of neurocognitive disorders. Here, we investigate the effects of CPE knockdown on early brain development and explore the functional significance of the interaction between CPE and its binding partner p150Glued. We demonstrate that CPE is required for cortical neuron migration and dendrite arborization. Furthermore, we show that expression of CPE-C10 redistributes p150Glued from the centrosome and that disruption of CPE interaction with p150Glued leads to abnormal neuronal migration and dendrite morphology, suggesting that a complex between CPE and p150Glued is necessary for proper neurodevelopment.


Assuntos
Carboxipeptidase H/metabolismo , Córtex Cerebral/fisiologia , Dendritos/fisiologia , Neurogênese/fisiologia , Neurônios/fisiologia , Animais , Células COS , Movimento Celular/fisiologia , Córtex Cerebral/embriologia , Chlorocebus aethiops , Camundongos , Ratos
5.
Mol Biol Cell ; 25(20): 3195-209, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25143404

RESUMO

Membrane fusion underlies multiple processes, including exocytosis of hormones and neurotransmitters. Membrane fusion starts with the formation of a narrow fusion pore. Radial expansion of this pore completes the process and allows fast release of secretory compounds, but this step remains poorly understood. Here we show that inhibiting the expression of the small GTPase Cdc42 or preventing its activation with a dominant negative Cdc42 construct in human neuroendocrine cells impaired the release process by compromising fusion pore enlargement. Consequently the mode of vesicle exocytosis was shifted from full-collapse fusion to kiss-and-run. Remarkably, Cdc42-knockdown cells showed reduced membrane tension, and the artificial increase of membrane tension restored fusion pore enlargement. Moreover, inhibiting the motor protein myosin II by blebbistatin decreased membrane tension, as well as fusion pore dilation. We conclude that membrane tension is the driving force for fusion pore dilation and that Cdc42 is a key regulator of this force.


Assuntos
Membrana Celular/metabolismo , Exocitose/fisiologia , Fusão de Membrana/fisiologia , Vesículas Secretórias/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Transporte Biológico , Humanos , Miosina Tipo II/metabolismo
6.
J Neurosci ; 32(7): 2564-77, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22396429

RESUMO

Exocytosis of secretory granules (SGs) requires their delivery to the actin-rich cell cortex followed by their attachment to the plasma membrane (PM). How these reactions are executed and coordinated is still unclear. Myrip, which is also known as Slac-2c, binds to the SG-associated GTPase Rab27 and is thought to promote the delivery of SGs to the PM by recruiting the molecular motor myosin Va. Myrip also interacts with actin and the exocyst complex, suggesting that it may exert multiple roles in the secretory process. By combining total internal reflection fluorescence microscopy, single-particle tracking, a photoconversion-based assay, and mathematical modeling, we show that, in human enterochromaffin cells, Myrip (1) inhibits a class of SG motion characterized by fast and directed movement, suggesting that it facilitates the dissociation of SGs from microtubules; (2) enhances their motion toward the PM and the probability of SG attachment to the PM; and (3) increases the characteristic time of immobilization at the PM, indicating that it is a component of the molecular machinery that tether SGs to the PM. Remarkably, while the first two effects of Myrip depend on its ability to recruit myosin Va on SGs, the third is myosin Va independent but relies on the C-terminal domain of Myrip. We conclude that Myrip couples the retention of SGs in the cell cortex, their transport to the PM, and their attachment to the PM, and thus promotes secretion. These three steps of the secretory process are thus intimately coordinated.


Assuntos
Actinas/metabolismo , Membrana Celular/metabolismo , Exocitose/fisiologia , Vesículas Secretórias/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Adesão Celular/fisiologia , Linhagem Celular Tumoral , Membrana Celular/ultraestrutura , Células Enterocromafins/metabolismo , Células Enterocromafins/ultraestrutura , Humanos , Ligação Proteica/fisiologia , Vesículas Secretórias/ultraestrutura
7.
Immunity ; 35(3): 361-74, 2011 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-21820334

RESUMO

Engagement of the B cell receptor (BCR) by surface-tethered antigens (Ag) leads to formation of a synapse that promotes Ag uptake for presentation onto major histocompatibility complex class II (MHCII) molecules. We have highlighted the membrane trafficking events and associated molecular mechanisms involved in Ag extraction and processing at the B cell synapse. MHCII-containing lysosomes are recruited to the synapse where they locally undergo exocytosis, allowing synapse acidification and the extracellular release of hydrolases that promote the extraction of the immobilized Ag. Lysosome recruitment and secretion results from the polarization of the microtubule-organizing center (MTOC), which relies on the cell division cycle (Cdc42)-downstream effector, atypical protein kinase C (aPKCζ). aPKCζ is phosphorylated upon BCR engagement, associates to lysosomal vesicles, and is required for their polarized secretion at the B cell synapse. Regulation of B lymphocyte polarity therefore emerges as a central mechanism that couples Ag extraction to Ag processing and presentation.


Assuntos
Apresentação de Antígeno , Linfócitos B/imunologia , Sinapses Imunológicas , Lisossomos , Receptores de Antígenos de Linfócitos B/fisiologia , Animais , Polaridade Celular , Lisossomos/metabolismo , Camundongos , Proteína Quinase C/imunologia , Receptores de Antígenos de Linfócitos B/imunologia , Proteína cdc42 de Ligação ao GTP/imunologia
9.
Nat Cell Biol ; 12(1): 19-30; sup pp 1-13, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19966785

RESUMO

Exosomes are secreted membrane vesicles that share structural and biochemical characteristics with intraluminal vesicles of multivesicular endosomes (MVEs). Exosomes could be involved in intercellular communication and in the pathogenesis of infectious and degenerative diseases. The molecular mechanisms of exosome biogenesis and secretion are, however, poorly understood. Using an RNA interference (RNAi) screen, we identified five Rab GTPases that promote exosome secretion in HeLa cells. Among these, Rab27a and Rab27b were found to function in MVE docking at the plasma membrane. The size of MVEs was strongly increased by Rab27a silencing, whereas MVEs were redistributed towards the perinuclear region upon Rab27b silencing. Thus, the two Rab27 isoforms have different roles in the exosomal pathway. In addition, silencing two known Rab27 effectors, Slp4 (also known as SYTL4, synaptotagmin-like 4) and Slac2b (also known as EXPH5, exophilin 5), inhibited exosome secretion and phenocopied silencing of Rab27a and Rab27b, respectively. Our results therefore strengthen the link between MVEs and exosomes, and introduce ways of manipulating exosome secretion in vivo.


Assuntos
Comunicação Celular , Endossomos/fisiologia , Exossomos/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Membrana Celular/metabolismo , Citometria de Fluxo , Imunofluorescência , Inativação Gênica , Células HeLa , Humanos , Immunoblotting , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Frações Subcelulares , Proteínas de Transporte Vesicular/antagonistas & inibidores , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Proteínas rab de Ligação ao GTP/antagonistas & inibidores , Proteínas rab de Ligação ao GTP/genética , Proteínas rab27 de Ligação ao GTP
10.
Biophys J ; 94(7): 2891-905, 2008 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-18178647

RESUMO

In endocrine cells, plasma membrane (PM)-bound secretory granules must undergo a number of maturation stages (i.e., priming) to become fusion-competent. Despite identification of several molecules involved in binding granules to the PM and priming them, the exact nature of events occurring at the PM still largely remains a mystery. In stimulated BON cells, we used evanescent wave microscopy to study trajectories of granules shortly before their exocytoses, which provided a physical description of vesicle-PM interactions at an unprecedented level of detail, and directly lead to an original mechanistic model. In these cells, tethered (T), nonfusogenic, vesicles are prevented from converting to fusogenic, docked (D) ones in resting conditions. Upon elevation of calcium, T-vesicles perform a 21-nm step toward the PM to become D, and fuse approximately 3 s thereafter. Our ability to directly visualize different modes of PM-attachment paves the way for clarifying the exact role of various molecules implicated in attachment and priming of granules in future studies.


Assuntos
Tumor Carcinoide/patologia , Tumor Carcinoide/fisiopatologia , Membrana Celular/ultraestrutura , Exocitose , Vesículas Secretórias/metabolismo , Vesículas Secretórias/ultraestrutura , Linhagem Celular Tumoral , Humanos , Movimento (Física)
11.
J Neurosci ; 27(39): 10636-45, 2007 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-17898234

RESUMO

Myosin Va (MyoVa) is a prime candidate for controlling actin-based organelle motion in neurons and neuroendocrine cells. Its function in secretory granule (SG) trafficking was investigated in enterochromaffin cells by wide-field and total internal reflection fluorescence microscopy. The distribution of endogenous MyoVa partially overlapped with SGs and microtubules. Impairing MyoVa function by means of a truncated construct (MyoVa tail) or RNA interference prevented the formation of SG-rich regions at the cell periphery and reduced SG density in the subplasmalemmal region. Individual SG trajectories were tracked to analyze SG mobility. A wide distribution of their diffusion coefficient, D(xy), was observed. Almost immobile SGs (D(xy) < 5 x 10(-4) microm2 x s(-1)) were considered as docked at the plasma membrane based on two properties: (1) SGs that undergo exocytosis have a D(xy) below this threshold value for at least 2 s before fusion; (2) a negative autocorrelation of the vertical motion was found in subtrajectories with a D(xy) below the threshold. Using this criterion of docking, we found that the main effect of MyoVa inhibition was to reduce the number of docked granules, leading to reduced secretory responses. Surprisingly, this reduction was not attributable to a decreased transport of SGs toward release sites. In contrast, MyoVa silencing reduced the occurrence of long-lasting, but not short-lasting, docking periods. We thus propose that, despite its known motor activity, MyoVa directly mediates stable attachment of SGs at the plasma membrane.


Assuntos
Membrana Celular/fisiologia , Cadeias Pesadas de Miosina/fisiologia , Miosina Tipo V/fisiologia , Vesículas Secretórias/fisiologia , Células Cultivadas , Humanos , Vesículas Transportadoras/fisiologia
12.
Eur Biophys J ; 37(1): 55-69, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17440716

RESUMO

Secretion of hormones and other bioactive substances is a fundamental process for virtually all multicellular organisms. Using total internal reflection fluorescence microscopy (TIRFM), we have studied the calcium-triggered exocytosis of single, fluorescently labeled large, dense core vesicles in the human neuroendocrine BON cell line. Three types of exocytotic events were observed: (1) simple fusions (disappearance of a fluorescent spot by rapid diffusion of the dye released to the extracellular space), (2) "orphan" fusions for which only rapid dye diffusion, but not the parent vesicle, could be detected, and (3) events with incomplete or multi-step disappearance of a fluorescent spot. Although all three types were reported previously, only the first case is clearly understood. Here, thanks to a combination of two-color imaging, variable angle TIRFM, and novel statistical analyses, we show that the latter two types of events are generated by the same basic mechanism, namely shape retention of fused vesicle ghosts which become targets for sequential fusions with deeper lying vesicles. Overall, approximately 25% of all exocytotic events occur via sequential fusion. Secondary vesicles, located 200-300 nm away from the cell membrane are as fusion ready as primary vesicles located very near the cell membrane. These findings call for a fundamental shift in current models of regulated secretion in endocrine cells. Previously, sequential fusion had been studied mainly using two-photon imaging. To the best of our knowledge, this work constitutes the first quantitative report on sequential fusion using TIRFM, despite its long running and widespread use in studies of secretory mechanisms.


Assuntos
Exocitose/fisiologia , Interpretação de Imagem Assistida por Computador/métodos , Microscopia de Fluorescência/métodos , Células Neuroendócrinas/citologia , Células Neuroendócrinas/fisiologia , Vesículas Transportadoras/fisiologia , Vesículas Transportadoras/ultraestrutura , Linhagem Celular , Humanos
13.
Biophys J ; 91(9): 3542-59, 2006 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-16891360

RESUMO

Analysis of trajectories of dynamical biological objects, such as breeding ants or cell organelles, is essential to reveal the interactions they develop with their environments. Many previous works used a global characterization based on parameters calculated for entire trajectories. In cases where transient behavior was detected, this usually concerned only a particular type, such as confinement or directed motion. However, these approaches are not appropriate in situations in which the tracked objects may display many different types of transient motion. We have developed a method to exhaustively analyze different kinds of transient behavior that the tracked objects may exhibit. The method discriminates stalled periods, constrained and directed motions from random dynamics by evaluating the diffusion coefficient, the mean-square displacement curvature, and the trajectory asymmetry along individual trajectories. To detect transient motions of various durations, these parameters are calculated along trajectories using a rolling analysis window whose width is variable. The method was applied to the study of secretory vesicle dynamics in the subplasmalemmal region of human carcinoid BON cells. Analysis of transitions between transient motion periods, combined with plausible assumptions about the origin of each motion type, leads to a model of dynamical subplasmalemmal organization.


Assuntos
Interpretação de Imagem Assistida por Computador/métodos , Microscopia de Fluorescência/métodos , Movimento/fisiologia , Vesículas Secretórias/fisiologia , Vesículas Secretórias/ultraestrutura , Linhagem Celular , Humanos
14.
Int J Parasitol ; 36(3): 309-18, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16368098

RESUMO

Microsporidia are obligate intracellular parasites forming environmentally resistant spores that harbour a rigid cell wall. This wall comprises an outer layer or exospore and a chitin-rich inner layer or endospore. So far, only a chitin deacetylase-like protein has been shown to localize to the Encephalitozoon cuniculi endospore and either one or two proteins have been clearly assigned to the exospore in two Encephalitozoon species: SWP1 in E. cuniculi, SWP1 and SWP2 in Encephalitozoon intestinalis. Here, we report the identification of two new spore wall proteins in E. cuniculi, EnP1 and EnP2, the genes of which are both located on chromosome I (ECU01_0820 and ECU01_1270, respectively) and have no known homologue. Detected by immunoscreening of an E. cuniculi cDNA library, enp1 is characterized by small-sized 5' and 3' untranslated regions and is highly expressed throughout the whole intracellular cycle. The encoded basic 40 kDa antigen displays a high proportion of cysteine residues, arguing for a significant role of disulfide bridges in spore wall assembly. EnP2 is a 22 kDa serine-rich protein that is predicted to be O-glycosylated and glycosylated phosphatidyl inositol-anchored. Although having been identified by mass spectrometry of a dithiothreitol-soluble fraction, this protein contains only two cysteine residues. Mouse polyclonal antibodies were raised against EnP1 and EnP2 recombinant proteins produced in Escherichia coli Our immunolocalisation data indicate that EnP1 and EnP2 are targeted to the cell surface as early as the onset of sporogony and are finally associated with the chitin-rich layer of the wall in mature spores.


Assuntos
Encephalitozoon cuniculi/química , Proteínas Fúngicas/análise , Esporos Fúngicos/química , Sequência de Aminoácidos , Anticorpos Antifúngicos/análise , Parede Celular/química , Quitina , Cromossomos Fúngicos/genética , Cisteína/análise , Cisteína/genética , DNA Circular/genética , DNA Fúngico/genética , Eletroforese em Gel de Poliacrilamida/métodos , Encephalitozoon cuniculi/genética , Encephalitozoon cuniculi/ultraestrutura , Técnica Indireta de Fluorescência para Anticorpo/métodos , Proteínas Fúngicas/genética , Glicosilação , Espectrometria de Massas/métodos , Microscopia Eletrônica/métodos , Microscopia Imunoeletrônica , Serina/análise , Serina/genética
15.
J Cell Biol ; 163(3): 559-70, 2003 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-14610058

RESUMO

The GTPase Rab27A interacts with myosin-VIIa and myosin-Va via MyRIP or melanophilin and mediates melanosome binding to actin. Here we show that Rab27A and MyRIP are associated with secretory granules (SGs) in adrenal chromaffin cells and PC12 cells. Overexpression of Rab27A, GTPase-deficient Rab27A-Q78L, or MyRIP reduced secretory responses of PC12 cells. Amperometric recordings of single adrenal chromaffin cells revealed that Rab27A-Q78L and MyRIP reduced the sustained component of release. Moreover, these effects on secretion were partly suppressed by the actin-depolymerizing drug latrunculin but strengthened by jasplakinolide, which stabilizes the actin cortex. Finally, MyRIP and Rab27A-Q78L restricted the motion of SGs in the subplasmalemmal region of PC12 cells, as measured by evanescent-wave fluorescence microscopy. In contrast, the Rab27A-binding domain of MyRIP and a MyRIP construct that interacts with myosin-Va but not with actin increased the mobility of SGs. We propose that Rab27A and MyRIP link SGs to F-actin and control their motion toward release sites through the actin cortex.


Assuntos
Actinas/metabolismo , Proteínas de Transporte/metabolismo , Células Cromafins/metabolismo , Depsipeptídeos , Vesículas Secretórias/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestrutura , Actinas/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Proteínas de Transporte/genética , Bovinos , Células Cromafins/ultraestrutura , Exocitose/efeitos dos fármacos , Exocitose/genética , Microscopia Eletrônica , Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo V/metabolismo , Células PC12 , Peptídeos Cíclicos/farmacologia , Ratos , Vesículas Secretórias/ultraestrutura , Tiazóis/farmacologia , Tiazolidinas , Proteínas rab de Ligação ao GTP/genética , Proteínas rab27 de Ligação ao GTP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...